Designation: B 540 - 97 (Reapproved 2002)

Standard Specification for Palladium Electrical Contact Alloy¹

This standard is issued under the fixed designation B 540; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the Department of Defense.

1. Scope

- 1.1 This specification covers an alloy containing palladium, silver, copper, gold, platinum, and zinc in the form of wire, rod, and strip for electrical contacts.
- 1.2 The values stated in inch-pound units are to be regarded as the standard. The SI units may be approximate.
- 1.3 The following safety hazard caveat pertains only to the test methods portion, Section 6 of this specification. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
- 1.4 It is the responsibility of the user to become familiar with all hazards including those identified in the appropriate Material Safety Data Sheet For this product/material as provided by the manufacturer.

2. Referenced Documents

2.1 ASTM Standards:

B 476 Specification for General Requirements for Wrought Precious Metal Electrical Contact Materials ²

E 8 Test Methods for Tension Testing of Metallic Materials 3

E 384 Test Method for Microindentation Hardness of Materials ³

3. Materials and Manufacture

- 3.1 Raw materials shall be of such quality and purity that the finished product will have the properties and characteristics prescribed in this specification.
- 3.2 The material shall be finished by such operations (cold working, heat treating, annealing, turning, grinding, pickling) as are required to produce the prescribed properties.

4. Chemical Composition

4.1 Material produced under the specification shall meet the requirements of chemical composition shown in Table 1.

TABLE 1 Chemical Requirements

Element	Composition, weight %		
Palladium	34.0–36.0		
Silver	29.0-31.0		
Copper	13.5-14.5		
Gold	9.5-10.5		
Platinum	9.5-10.5		
Zinc	0.8-1.2		
Total platinum group metal impurities (iridium, osmium, rhodium, ruthenium)	0.1 max		
Total base metal impurities	0.2 max		

5. Mechanical Properties

5.1 The contract or order may specify ultimate tensile strength, elongation, mirohardness (Knoop or Vickers), or a combination of these mechanical properties (as listed in Table 2, Table 3, and Table 4) as temper criterion. If the contract or order does not specify a temper criterion, then the criterion for temper designation will be ultimate tensile strength and elongation.

6. Test Methods

- 6.1 Test methods shall be in accordance with Specification B 476.
- 6.1.1 Knoop hardness tests shall be in accordance with Test Method E 384. Material 0.005 in. (0.13 mm) in thickness (diameter) and larger shall be tested using a 100-g indenter load. Material less than 0.005 in. (0.13 mm) in thickness (diameter) shall be tested using a 50-g indenter load. A minimum of five hardness indentations shall be made on each specimen. All indentations shall be made so that the long axis of the indenter is parallel to the rolling or drawing direction of the material. The hardness value reported shall be the average of the five indentations.
- 6.1.2 All tension test specimens shall be full cross-section size when practical (see Test Methods E 8).

¹ This specification is under the jurisdiction of ASTM Committee B02 on Nonferrous Metals and Alloys and is the direct responsibility of Subcommittee B2.05 on Precious Metals and Electrical Contact Materials.

Current edition approved Dec. 10, 1997. Published October 1998. Originally published as $B\ 540-70$. Last previous edition $B\ 540-91$.

² Annual Book of ASTM Standards, Vol 02.04.

³ Annual Book of ASTM Standards, Vol 03.01.

TABLE 2 Mechanical Properties of Wire ^A (0.004 to 0.020 in. (0.1 to 0.5 mm) diameter)

	Temper			
Property	Solution- Annealed	Stress- Relieved	Ductile Heat-Treated Age-Hardened	Heat Treated Age-Hardened
Tensile strength, ksi	110–130	140–170	160–190	160–200
Tensile strength, MPa	760–900	970-1170	1100-1310	1100-1380
Elongation, % in 2 in. (51 mm)	20 min	10–20	8–18	1–10
Hardness, Knoop ^B	200–260	280-340	320-370	350-410
Hardness, Vickers, 100-g load (50-g under 0.005-diameter)	190–250	265–340	320–380	330–400

^AThe limits to all properties apply only to the sizes specified.

TABLE 3 Mechanical Properties of Wire A (Over 0.020 to 0.040 in. (0.5 to 1.0 mm) diameter)

Property		Temper			
Property	Solution-Annealed	Stress-Relieved	Ductile-Hardened	Age-Hardened	
Tensile strength, ksi	105–130	130–170	155–180	160–200	
Tensile strength, MPa	720-860	900-1170	1070-1240	1100-1380	
Elongation, % in 2 in. (51 mm)	15 min	8–25	8–25	1–10	
Hardness, Knoop ^B	200-260	280-340	310-360	340-400	
Hardness, Vickers:	190-250	265-340	320-380	330-400	
100-g load					

^AThe limits to all properties apply only to the sizes specified.

TABLE 4 Mechanical Properties of Strip ^A (0.003 to 0.020 in. (0.075 to 0.5 mm) thick)

Dronorty	Temper			
Property	Solution-Annealed	Stress-Relieved	Ductile-Hardened	Age-Hardened
Tensile strength, ksi	110–135	135–160	150–185	160–200
Tensile strength, MPa	760-930	930-1100	1030-1280	1100-1380
Elongation, % in 2 in. (51 mm)	12 min	8–25	8–25	1–10
Hardness, Knoop ^B	200-260	280-340	300-360	340-400
Hardness, Vickers 100-g load (50-g load under 0.005 thick)	185–255	265–340	320–380	330–400

^AThe limits to all properties apply only to the sizes specified.

- 6.1.3 All tests shall be conducted in room temperature, 65 to 85°F (18.3 to 29.4°C).
- 6.2 Chemical analysis shall be performed by spectrochemical or wet analysis methods.

7. Inspection and Testing

- 7.1 Material furnished under this specification shall be inspected and tested by the manufacturer as listed below:
 - 7.1.1 Visual inspection at 10× magnification,

- 7.1.2 Tension or hardness tests, or both, for temper verification,
 - 7.1.3 Dimensional inspection, and
- 7.1.4 Chemical analysis when indicated by the purchase order.

8. Keywords

8.1 contact; electrical contact material; palladium alloy; precious metal

^BSee 7.1.1.

^BSee 7.1.1.

^BSee 7.1.1.

APPENDIX

(Nonmandatory Information)

X1. REFERENCE PROPERTIES OF PALLADIUM ALLOY ELECTRICAL CONTACT MATERIAL

X1.1 Table X1.1 provides a list of typical property values contact design and application.

TABLE X1.1 Typical Physical Properties

	Solution- Annealed	Stress- Relieved	Ductile- Hardened	Age- Hardened
Resistivity, $\mu\Omega$ - cm	34.9	33.2	31.6	31.6
Density, Mg/m ³	11.8	11.8	11.8	11.8
Solidus temperature, °C	1015	1015	1015	1015
Linear coefficient of thermal expansion/°C (23-100°C)	$13.5 imes 10^{-6}$	13.5 $ imes$ 10 $^{-6}$	$13.5 imes 10^{-6}$	$13.5 imes 10^{-6}$
Thermal emf versus platinum (0-100°C), µ V/°C	-10	-9	-8	-8
Softening voltage, mV	220	220	220	220
Melting voltage, mV	385		400	400
Fatigue strength (rotating-bending)				
at 10 8 cycles:				
ksi	50	50	50	50
MPa	345	345	345	345
Modulus of elasticity in tension:				
ksi	17×10^{3}	17×10^{3}	$17 imes 10^{3}$	$17 imes 10^{3}$
MPa	117×10^{3}	117×10^{3}	117×10^{3}	117×10^{3}
Proportional limit:				
ksi	90	135	135	145
MPa	620	930	930	1000

which are useful for engineering calculations in electrical

ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, at the address shown below.

This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website (www.astm.org).